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a b s t r a c t 

Efficient storage systems come from the intelligent management of the data units, i.e., disk 

blocks in local file system level. Block correlations represent the semantic patterns in stor- 

age systems. These correlations can be exploited for data caching, pre-fetching, layout opti- 

mization, I/O scheduling, etc. to finally realize an efficient storage system. In this paper, we 

introduce Block2Vec, a deep learning based strategy to mine the block correlations in stor- 

age systems. The core idea of Block2Vec is twofold. First, it proposes a new way to abstract 

blocks, which are considered as multi-dimensional vectors instead of traditional block Ids. 

In this way, we are able to capture similarity between blocks through the distances of their 

vectors. Second, based on vector representation of blocks, it further trains a deep neural 

network to learn the best vector assignment for each block. We leverage the recently ad- 

vanced word embedding technique in natural language processing to efficiently train the 

neural network. To demonstrate the effectiveness of Block2Vec, we design a demonstrative 

block prediction algorithm based on mined correlations. Empirical comparison based on 

the simulation of real system traces shows that Block2Vec is capable of mining block-level 

correlations efficiently and accurately. This research and trial show that the deep learning 

strategy is a promising direction in optimizing storage system performance. 

© 2019 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

In the Big Data era, the performance of storage systems has become increasingly important. High-performance distributed

file systems have drawn increasing attention for both high-performance computing and cloud computing platforms [1–4] .

Although in distributed file systems, factors like data placement [5] , metadata management [6] , fault tolerance [3] , and

scheduling [7] all affect the overall performance, the I/O requests will eventually arrive at individual disks at the back-end

storage servers and rely on their performance to deliver an overall optimal performance. Hence, to achieve the best I/O

performance in distributed and parallel file systems, block-level access in local disks is also critical to be optimized. 

It is acknowledged that the correlations between disk blocks are critical to the improvement of storage disk perfor-

mance [8–10] . The correlation can be used for re-organizing data blocks to maximize the sequential access [11,12] , pre-

fetching blocks to reduce I/O latency, or increasing the cache-hits [13,14] . The capability of being able to detect the corre-
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lations between blocks and use them to direct local storage optimization is important to not only local systems but also

large-scale distributed systems. 

The correlations between blocks in storage systems come from several sources. First, the sequential blocks are more likely

to be accessed together (i.e., the locality principle [15] ), indicating close correlations among them. Second, applications may

introduce temporal correlations among blocks that are not physically close to each other. For example, the B-tree or B ∗-tree
data structures in database systems will introduce continuous accesses between blocks that store parent nodes and child

nodes. The Ext3 or Ext4 file systems also introduce temporal correlations between blocks where the file data is stored and

the blocks the corresponding inode [16] is stored. Last but not the least, multiple applications that interact with each other

also introduce block correlations. Such applications commonly exist in the form of workflow in scientific computing. 

As correlated blocks tend to be accessed relatively close to each other in an access stream, it is possible to detect them

by analyzing the block access stream. Generally, there are two types of block access streams, at application-level and at

system-level . The application-level access stream is collected in a per-application way, and a system-level access stream is

collected at the system level as a reflection of data accesses from all applications and even the operating system (OS) itself.

In this research, we focus on the system-level access stream for several reasons. First, system-level block accesses are easier

to collect compared to per-application block access collection, as applications access data at the file level, which needs to

be mapped to blocks and also differentiated from other applications and the OS. Second, system-level streams are more

accurate in terms of the access order than application-level streams, because they are not affected by operating system

I/O scheduling. Third, system-level access streams can further reflect the correlations generated from interactions among

applications and can be more useful to optimize the storage system. 

Given a continuous block access stream at the system level, the objective of this research is to infer accurate block

correlations based on access context. In fact, there have been a large number of research efforts focusing on this specific

or relevant problem. The probability graph [17,18] was designed to record the access closeness of blocks as a graph, whose

edges denote how many times two blocks are shown together. Such graph can be further used to predict next IO access

based on the current one. Semantic distance [12] leverages the knowledge of how the file system uses the disk system

including on-disk data structure to infer relationship of blocks. Small artificial network, which contains 13 input units, 10

output units, and 12 units in the hidden layer, was proposed in [19] to learn the sequence of I/O accesses. The Markov

model and Hidden Markov Model [20] abstract the access sequence as a series of changing states and use them to predict

next possible access. Pattern signatures [21,22] were used to capture application signatures based on their I/O behaviors.

Some complex data mining algorithms, especially frequency mining, were also proposed to mine the frequent patterns in

I/O access traces for correlations [23,24] . 

In this study, we propose Block2Vec , a strategy that applies the advanced deep learning (DL) technique to efficiently

and accurately mine the block correlations from large-size block access streams. The core idea of Block2Vec contains two

aspects. First, we propose a new way to abstract disk blocks as multi-dimensional vectors instead of traditional indexes to

better abstract their features . Second, we propose to train a deep neural network to learn the best vector value for each block

by training on real-world block access traces . The training algorithm is inspired by the word embedding algorithm called

Word2Vec [25,26] . To the best of our knowledge, Block2Vec is the first approach to leverage the deep learning techniques

into block correlation mining. It is also the first study that models disk blocks into high-dimensional vectors instead of

consecutive, single dimensional block indexes. We conduct extensive evaluations through a common use case, disk access

prediction, to analyze the benefits of exploiting block-level correlations via the newly proposed approach. Compared to

existing block correlation detection algorithms including sequential prediction (SP) and probability graph (PG), Block2Vec 

achieves impressive and stable prediction accuracy with a low overhead. These evaluations based on real-world I/O traces

also confirm that Block2Vec is able to run efficiently with reasonable resources as an effective block correlation mining

method for modern storage systems. 

The rest of this paper is organized as follows. In Section 2 , we introduce the core ideas of this research study: a generic

model for mining block correlations, which contains a statistical block access model and a new vector-based representa-

tion of disk blocks. In Section 3 , before discussing the detailed design and implementation of proposed approach, we give

a brief introduction of deep learning (DL) techniques and the highly relevant word embedding tasks in natural language

processing (NLP). In Section 4 , we present the detailed design and implementation of Block2Vec. In Section 5 , we further

introduce a simple correlation-based block prediction algorithm and a semi-supervised block clustering algorithm for block

reorganization as two applications of detected block correlation. We also use them as evaluation metrics in the later section.

Section 6 presents our experimental results. Section 7 concludes the paper and discusses future work. 

2. General model for mining block correlations 

2.1. Statistical block access model 

It is observed that correlated blocks are accessed close to each other because of their data relevance. Therefore, if two

blocks are almost always accessed together within a short time interval, it is very likely that these two blocks are correlated

to each other. In other words, it is possible to automatically infer block correlations in a storage system by analyzing the

access stream. This observation plays the foundation of mining block correlations. However, it is not trivial to quantitatively

measure such correlations from this intuitive observation. The similar problem also exists in natural language processing
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(NLP), where similar words also show in the similar context or closely with each other, e.g., “Obama” with “President”. To

be able to quantitatively measure such word similarity, statistical language model [27] is proposed and widely used. Inspired

by the statistical language model, we propose to use statistical model to describe the block accesses in this work. 

The statistical model describes the probability of a block, say b 4 , being the next one to be accessed, given an existing

block access sequence, say { b 1 , b 2 , b 3 }. This value reflects the block correlations among b 4 and b 1 , b 2 , b 3 , which can be

mathematically calculated as the conditional probability of sequence { b 1 , b 2 , b 3 , b 4 } given { b 1 , b 2 , b 3 }. In this way, mining

block correlation can be considered as building a statistical model to estimate the probability of a certain group of blocks.

The larger the probability is, the closer the group of blocks are. For example, if P { b 4 | b 3 } = 0 . 9 , then we know that b 3 and

b 4 are closely correlated. 

In a formal description, the statistical model of block access calculates the probability that a given block sequence ap-

pears. This can be calculated based on the probability of each block and its conditional probability in the sequence as

follows. 

P (b 1 , . . . , b m ) = P (b 1 , . . . , b m −1 ) · P (b m | b 1 , . . . , b m −1 ) 

= 

m ∏ 

i =1 

P (b i | b 1 , . . . , b i −1 ) 

Here, each conditional probability can be calculated by counting corresponding access pattern based on given block

access traces. However, as a block access sequence can easily contain many blocks, it will quickly become impractical to

compute such a value. We can approximate it by only considering a fixed number of preceding blocks, for example n . This

approximation is widely used in statistical language model too, known as the N -gram [28] . In this case, the probability of

observing a block sequence b 1 , . . . , b m is given as: 

P (b 1 , . . . , b m ) = P (b m −n +1 , . . . , b m −1 ) ·
P (b m | b m −n +1 , . . . , b m −1 ) 

= 

m ∏ 

i =1 

P (b i | b i −n +1 , . . . , b i −1 ) 

Here, it is assumed that the probability of observing the i th block b i in the context history of i − 1 preceding blocks can

be approximated by the probability of observing it in the shortened context history of the preceding n − 1 blocks ( n th order

Markovian property). With the capability of calculating such probability for any block sequence, we can find block b m with

the maximal likelihood of forming the entire sequence and choose it as the next prediction. 

As we have described, it is not difficult to observe that the statistical block access model is similar to its natural language

cousin, the statistical language model, which is a probability distribution over sequences of words. In fact, such similarity

behind these two fields comprises the rationale and motivation for this work. In this research, for the first time, we explore

applying those techniques, used to build statistical language model in NLP, onto block correlation mining for storage systems.

2.2. Vector representation of blocks 

Most existing block correlation detection strategies treat each block as an atomic unit and represent them as indexes in

the total physical blocks (e.g., block Id b i ). Such representation is similar to “one-hot” representation [29] in NLP. In this way,

mining block correlation becomes learning the similarity between two unique integer Ids based on block access sequences.

This representation of blocks is simple and straightforward, but it has several limitations. First, the representation itself

(e.g., block Id) does not contain the notion of correlation similarity as they are just integer indexes of blocks, indicating the

location of blocks. For example, even block b 1 and b 200 are closely correlated, their representations (1200) cannot show it.

Second, it suffers the curse of dimensionality problem whenever a machine learning or pattern detection algorithm is applied

on the block accesses traces to learn the pattern [30] . Specifically, as a storage system usually contains a large number

of blocks, if we just use an integer Id to represent each block, the number of all possible sequences of block accesses

will increase exponentially with the number of the blocks. This indicates a huge number of combinations of values (i.e.,

block accesses) that must be discriminated from each other by the pattern mining algorithm, which significantly increases

the computation complexity. However, using a vector representation of blocks, the learning algorithm can generalize one

combination of values (vectors) to possibly a large number of combinations of similar vectors, hence improve the training

accuracy. 

In this research, for the first time, we propose to use a vector instead of an index to represent a block. It will associate

each block with a continuous-valued vector, instead of only representing the physical location through a block Id. The vector

representation has two obvious advantages. First, the vector indicates a tuple of features that characterize the block. Once

the vector representations are assigned to blocks, each block corresponds to a point in a high-dimensional feature space.

One can imagine that each dimension of that space is related to a characteristic of the block. For example, the physical

location of block, the file it belongs to, the user who owns the file, the creation time, the access time, etc. The rationale is

that the correlated blocks will get to be closer to each other in that space. In this way, a sequence of block accesses can

thus be transformed into a sequence of these feature vectors, which can be efficiently learned by a deep neural network.
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Second, the vector representation allows the model to generalize the access sequences that have not yet shown in the

existing block access history, but are similar to existing ones in terms of their features, i.e., their vector representations. For

example, assume that the vector representations of blocks b 1 and b 10 are similar, and those of b 2 and b 20 are also similar.

In the block access history, the sequence of ( b 1 , b 2 ) occurs multiple times and is always followed by b 3 . Later, if we see

the sequence ( b 10 , b 20 ), which never occurs in history, using their vector representations can help generalize them to the

known sequence ( b 1 , b 2 ) and help make a prediction about next visit, b 3 or a block similar to b 3 . The ability to generalize

block access sequences into combinations of high-dimensional vectors will significantly alleviate the problem of the curse of

dimensionality as many different combinations of block accesses are merged into similar vectors. 

The vector representation of blocks can be trained through a neural network [29] . But, it still indicates a high compu-

tational complexity, to train on a large number of block accesses. For example, a normal 1TB disk may contain billions of

blocks (4KB block size). Recently, in NLP, new architectures and training models have been proposed to reduce the com-

plexity of training a complex neural network on large datasets [25,26] . This plays a foundation for our research. In the

next section, we will give a brief introduction on the deep neural network and the progress in NLP before describing our

proposed block correlation mining approach. 

3. Deep learning and word embedding 

Deep learning is a rapidly emerging machine learning technique originally proposed as an extension to the traditional

artificial neural network (ANN) [31] . The word “deep” comes from not only the fact that such an extended ANN normally

has multiple hidden layers forming a deep hierarchy as compared to traditional ANN, but also its capability to perform

complicated transformations to reach a high-level abstraction of the data. 

An ANN transforms input data to output, usually called prediction . The powerfulness of ANNs is rooted in their capability

to mimic any function numerically under a tolerable precision, if given enough layers and/or nodes/neurons. An ANN usually

has a fixed architecture, i.e., the connections between nodes. By changing the weights between connections, the ANN can be

reconfigured to mimic different functions. Known as the training process, an ANN usually uses an iterative process to update

those weights based on many pairs of input data and expected output (sometimes called the label or target ). Given an input

data, an untrained ANN most likely produces a prediction output that is very off from the target. As long as there is a large

enough error between the target and the prediction, the training will keep going and in each iteration of the training, the

weights of all connections are updated. In most cases, the more complex the network is, the more data is needed to train

the ANN. Therefore, the numbers of data (thus, iterations to train an ANN) and weights to update (thus, computational cost

at each iteration) require massive computational power to train a highly complex ANN. This makes deep learning impractical

and unpopular until recently, especially after the wide use of Graphical Processing Unit (GPU) in scientific research. 

Numerous research results have shown that DL, compared with traditional neural networks, can build much more ac-

curate and robust models. The reason, as mentioned earlier, is because a more complex ANN can mimic a more complex

function. Therefore, DL is currently widely used in many fields including NLP. One of the most exciting uses of DL in NLP is

word embedding [32] , which maps words to high-dimensional vectors of real numbers by training a deep artificial neural

network [29] . Such a vector is called a “distributed representation” of an object. Unlike its common meaning in super or 

parallel computing, here the word “distributed” means vectorized, i.e., an objected is presented using more than one real

numbers. Representing (i.e., embedding) sparse objects (e.g., words) into vectors makes many tasks convenient. For example,

the similarity or correlation between two objects can be calculated by the cosine of the angle between the two correspond-

ing vectors. 

Fig. 1 shows an example deep neural network that can generate the embedding value for each word by training on a set

of 5-word sequences, such as “the cat sits on mat” or “a boy eats his dinner”. For each input sequence, we calculate the

possibility of the middle word s ( t ), knowing its context s (t − 2) , s (t − 1) , s (t + 1) , s (t + 2) . The input layer contains nodes

correspond to the 4 context words where each context word is a high-dimensional vector [ v 1 , . . . , v n ] connected to the
hidden layer. The hidden layer normally applies a simple operation, e.g., summation, on all vectors from the input layer and

sends results to the output layer. The output layer is huge as each node corresponds to one word in the vocabulary. Each

output node produces an output between 0 and 1, i.e., the probability that the corresponding word is the middle word s ( t ),

and the sum of all these output values will add up to 1. The output-layer node that corresponds to the middle word s ( t ) is

expected to have the largest output (the probability). 

The training rationale is straightforward. Initially, each word is represented as a random vector. Hence, at the early stage

of training, the prediction is very likely to be wrong. For any given training sequence, the expected word (target) should

have the maximal probability in the output layer. If the hidden layer yields a word other than the target, the weights and

vectors will be updated by back-propagation [33] . Afterwards, the updated vectors of input words will be copied to the

output layer. In this way, a network can be trained to both predict the possibility of word and generate accurate vector

representation for each word. After training the network using a huge amount of word sequences, we will be able to obtain

the vectors to represent words. 

After words are represented in vectors, many tasks can be done easily by operations on vectors. For example,

vec(“Germany”) + vec(“capital”) is close to vec(“Berlin”). This can help many tasks such as question answering (e.g., what is

the capital of Germany?) or knowledge base construction (e.g., if we know that Berlin is the capital of Germany, and we also

know vec(“France”) + vec(“capital”) is close to vec(“Paris”), we can gain new knowledge that Paris is the capital of France). 
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Fig. 1. A neural network example for calculating word embedding for English words (e.g., top 50,0 0 0) by solving the “filling-the-blank” problem. The 

training is done by using numerous 5-word sequences, e.g., “the cat sits on mat ”, from English text. The input is 4 words in the 5-word sequence except 

the middle word, e.g., “the cat _ on mat ”. Each neuron in the output layer corresponds to one of the n words. A correct prediction will yield the highest 

probability for the word “sits ”. A wrong prediction will trigger the neural network to update vector representation of words and the weights between 

neurons. 

Fig. 2. Overall architecture of Block2Vec. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Training such a neural network for the accurate vector representation of words is an active research topic [34] in NLP

with broad applications, such as machine translation [35,36] and sentiment analysis [37] . Word2Vec [25] is a representative

one due to its optimized network architecture and training models, which save a huge amount of computation. 

In this study, inspired by word embedding, we propose to use high-dimensional vectors to represent disk blocks. Like

Word2Vec which allows studying the similarity between words by vector operations, our method, known as Block2Vec , al-

lows accurate mining of the correlation between blocks. To the best of our knowledge, our study is the first to use dis-

tributed/vector representation and deep learning techniques for such a purpose. 

4. Block2Vec design and implementation 

In this section, we introduce the design and implementation of Block2Vec , a deep neural network-based solution to learn

the vector representation of blocks from a sequence of block accesses. Its overall architecture is shown in Fig. 2 . The whole

system begins with a stream of I/O traces, which will be pre-processed and formatted into training sets. These training

datasets then are used to train a deep neural network to obtain the vector representation of each block. Utilizing such a

vector representation, the distance between any two vectors can be calculated. This distance indicates the block correlations,

which can be further used to improve storage system efficiency towards new coming I/O requests. We will describe the data

pre-processing, the neural network architecture, the training algorithm, and discuss its efficiency in this section. 

4.1. Data pre-processing: cutting window 

The first challenge of training a deep neural network for mining block correlation is the training set. The system-level

block access sequence is a continuous sequence of accessed blocks without any boundary. We are not interested in the

correlation of two blocks distant from each other in terms of access time. From a storage system’s point of view, it is much

more interesting and useful to consider block accesses that are not far apart. To address this, in Block2Vec , we use access

distance to divide continuous block access trace into multiple closely related block accesses. Specifically, we examine how
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Fig. 3. Splitting block sequences into multiple block sentences. The maximal cutting window is 5 time units in this example. 

Fig. 4. A piece of real-world block access trace (MSR-trace). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

far two continuous block accesses depart by measuring the time elapsed between them. We set a maximal threshold for

such distance, denoted as cutting window max win . Once a block access happens later than max win after the previous one,

we consider a new “sequence” has started. In this way, the history block access trace is sliced into size-variant shorter

sequences. Each sequence contains accesses that are temporally related. 

Fig. 3 illustrates how the access sequence abcabd is divided into separate block sequences with max win = 5 . Note that

the time interval is calculated based on two continuous block accesses, not from the start of the sequence. For example,

accessing d is 6 intervals after visiting a , but they are still in the same sequence because it is only 5 intervals later than

visiting its previous b . In this way, it is possible that a single block sequence contains a large number of block accesses. In

real-world block traces, the maximal time difference max win is measured in milliseconds and its best value is based on the

usage of the block correlations. For read-ahead pre-fetching, max win should be relatively small to cover the closest related

block accesses only. For data re-organization, the max win can be relatively large to find more subtle correlations to structure

the data blocks. In this study, we set max win = 10 0 0 ms except otherwise noted. 

4.2. Data pre-processing: block access translation 

After splitting the single sequence of block accesses into multiple relevant sequences, the next challenge is that each

block operation may access various sizes of data. Fig. 4 shows a piece of real world block trace snippets from MSR-Cambridge

trace [38] (detailed description of such trace is in Section 6 ). Here, the 6th column shows the size of each block access in

Bytes. We can see different access sizes across those items (specifically marked with red boxes): some of them are 4096

(indicating a whole 4KB block access), some are smaller (e.g., 1536 Bytes), and some are much larger (e.g., 32,768 Bytes).

Other block-level I/O traces have the similar property. 

For large I/O operations, we use an aggregated way to translate them, in which only one block Id is included in the final

sequence no matter how many bytes are read from that block. Thus, each block access is actually considered as an object

access, whose data accesses may vary in size. 

In addition, a system-level I/O trace contains both read and write operations as shown in Fig. 4 . In Block2Vec , we train

the neural network using both because both operations reflect the correlations of blocks, which actually come from the

data stored on them. We differentiate them by appending an operation bit at the end of their identifications. For exam-

ple, the “Write” on block 579637248 is translated to 579637248W and the “Read” on the same block is translated to

579637248R . This also helps future prediction. By splitting them, we are able to predict next block to be read or written,

which is important for different use cases. For example, only future reads need to be pre-fetched, but both read and write

are important for data re-organization. 

4.3. Block2Vec neural network architecture 

Block2Vec leverages deep neural network to learn the vector representation of blocks. Its neural network architecture is

shown in Fig. 5 . Each time, it takes k (called the context window ) recent block accesses as the training set. As described,

each block is represented as an n -dimensional vector [ v 1 , . . . , v n ]. All input vectors are connected to the hidden layer. The
hidden layer sums all input vectors into a single vector. Each dimension of such vector connects to the output layer, which,

similar to Word2Vec, is a Huffman tree. The connections are built between each dimension of the vector to each node on

the Huffman tree. 

The Huffman tree is built from a full scan of the entire block accesses. All nodes have different path lengths to the root of

the tree depending on their occurring frequencies. While building the Huffman tree, the frequency of each block is recorded

for an elimination procedure later. Infrequent blocks of fewer than min f occurrences are ignored as correlations involving
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Fig. 5. Neural network architecture of Block2Vec. 

Fig. 6. Two training models in Block2Vec: CBOW and Skip-gram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

these rarely accessed blocks are considered not stable. For example, if a block is only accessed once in the whole trace, it

will not be persuasive to make a conclusion that it is correlated with other blocks. The blocks not filtered out are called

active blocks . To be analyzed in Section 4.5 , the number of active blocks significantly affects the computation complexity of

Block2Vec . In this work, we use an empirical value min f = 5 for a good balance between complexity and block coverage. 

Once the output layer of the neural network is built and the training set has been pre-processed, Block2Vec will train the

neural network. Vector representation of each block and all weights in the neural network are randomly initialized. Each

time, a sequence of block accesses inside a context window is sent to train. According to the training model, both input

and expected output are generated and fed into the network. Given the current weights in the network, an output can be

calculated. If the output matches the expected one, the training will move to the next context window. If the outputs are not

correct, a back-propagation will happen to adjust all weights from the hidden layer to the input layer, and most importantly,

the vector values of all input blocks. 

Block2Vec contains two different training models, both of which have been widely used in NLP [25,26] . Shown in Fig. 6 (a),

the first model called Continuous Bag-of-Words (CBOW) is almost identical to what we have seen in the “filling-the-blank”

example earlier in Fig. 1 . The training criteria are to correctly classify the current (middle) block given several future and

history blocks as the input. It does not consider the order of blocks in the trace history as both future and history block

accesses are summed together in the hidden layer. The second one is called Skip-gram model, as shown in Fig. 6 (b). Instead

of predicting the current block based on the context, it tries to predict the context, i.e., two preceding blocks and two

succeeding blocks in this example, based on the current block. The Skip-gram model considers the order of block accesses

as it considers the input as a single block and the output forms a moving window on the block accesses sequence. This

is critical for our use case since the order is important in block correlations. Also, Skip-gram is also able to obtain more

accurate vector representation of blocks than CBOW simply because Skip-gram model allows more “targetted” update to the

vectors of input block. Specifically, in Skip-gram model, only the vector of one block is updated by one back-propagation,

while in CBOW model the change triggered by one back-propagation is distributed to the vectors of all input blocks. In the

evaluation section ( Section 6 ), we report a detailed computation time and accuracy comparison between these two models.

Block2Vec allows users to choose either one as the training model. The default model is Skip-gram. 
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Fig. 7. Time sensitive training in Block2Vec. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. Time sensitive training 

As described in the previous section, to train Block2Vec neural network, each time we choose a set of blocks in the

context window to generate inputs and the expected outputs based on the chosen model (i.e., CBOW or Skip-gram) to feed

the neural network. However, this does not consider the time sensitivity of block accesses. In a natural language, the time

interval between two continuous words is not considered important, and they will not affect the correlation between the

words. However, such interval is important for block correlations. For example, consider two block accesses: [ b 1 , b 3 ] and [ b 2 ,

b 3 ] with access times [0,4] and [5,6], respectively. The correlation between b 1 and b 3 should be considered less strong than

that between b 2 and b 3 since the former has longer interval. A long interval indicates the higher possibility of irrelevant

data accesses. 

Existing training algorithms only consider the distance of the order of block accesses. For example, Word2Vec utilizes

a random sampling to differentiate the closeness of words. Specifically, each time for a word s t , instead of directly using

the words within the context window k , one could have a random window size as rand ( k ). Since the trace file will be fed

multiple times to train the network, randomly sampling will give less weight to those distant words. However, such sam-

pling strategy does not work well for block accesses since it does not reflect the time intervals between block accesses. In

Block2Vec , we use a different way to sample the context window. Specifically, we also consider the elapsed time between

block accesses in the context window. Two sets of blocks in the same order but with different time intervals will be con-

sidered differently. Fig. 7 shows how it works for CBOW model. In this example, if the current block is c , we first choose a ,

b , d , e as they are inside the initial time window (i.e., 8 ms). Then, we check block Ids inside a smaller context window (cut

in half), and find out the inputs (within 4 ms). Repeating this step for another half context window (i.e., 2 ms), we have b ,

d as the input again. In this way, Block2Vec maximally leverages the closely sequential block accesses and also amplify the

impact of closeness between block accesses. 

4.5. Efficiency of Block2Vec 

Block2Vec is the first method to consider each block as a high-dimensional vector and to train a deep neural network to

learn such vector representation accurately. By leveraging the recent progress in deep learning, it delivers this promise with

reasonable resource requirement. 

4.5.1. Memory consumption 

Block2Vec requires memory space to store the Huffman tree, weights of the neural network, and other auxiliary data

structures. But, all memory consumption depends on the size of active blocks , which have high access frequency (larger than

min f ) in the trace during the collection period. In fact, although a modern hard-disk can have billions of blocks (4TB / 4KB

≈ 1 billion), the frequently accessed (active) blocks during a period are usually limited. For example, the MSR Project2
traces [38] , collected in 2007 on a active commercialized server (their project building server) for a week’s time period,

only access around 16 million different blocks, much smaller than the total number of blocks in a typical disk at that time

(500GB/4KB ≈ 134 million). Moreover, as Block2Vec only considers blocks that are frequent in the trace (frequency above

the threshold min f ), it will further reduce the number of blocks and hence reduce the memory consumption. Fig. 8 shows

the number of active blocks vs. the minimal frequency ( min f ) on the Project2 trace. We can easily observe that the

number of active blocks drops significantly as the minimal frequency increases. Due to these reasons, Block2Vec is more

space efficient than probability graphs [18] because they do not need to maintain the information of edges between any

two close blocks, which has up to O ( N 
2 ) space complexity, during the graph building process. 

4.5.2. Computational complexity 

The training complexity of CBOW model is O(N × D + D × log 2 V ) [39] . Here, N is the size of the context window, D is

the dimension of the vector, and V is the size of active blocks. As V is much smaller than a total number of blocks in

disks as we have described, the training is reasonably fast. In fact, the training phase itself is faster than block correlation

mining algorithms such as probability graph [18] or frequency mining like C-Miners [24] . The training phase of a probability

graph needs to update N vertexes each time when a new block is accessed. To iterate all active blocks, the computation

complexity becomes N ×V , which is also the computation complexity of C-Miners. The training complexity of Skip-gram
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Fig. 8. The number of active blocks vs. min f in Project2 trace. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model is O(N × (D + D × log 2 V ) [39] . Note that, building the Huffman tree is not considered a part of the training phase.

It costs O ( V × log 2 V ) to build such a tree from scratch. But, this is not needed for each run. Also, Block2Vec is designed for

off-line training, which could happen with a fixed interval, for example, one week. We will give detailed training time in

the evaluation section. 

5. Applications and use cases 

5.1. Correlation-based block prediction 

Thanks to the vector representation by Block2Vec, block correlations can be quantitatively measured by their vector

distances in the high-dimensional space. Such correlation can be used to predict future data block accesses given a sequence

of current block accesses. The rationale for the prediction comes from the fact that the neural network is trained in a way

that similar blocks should appear in the similar context. The simple correlation-based block prediction strategy works in this

way: while I/O block accesses are being issued, the prediction algorithm keeps a look-back window to keep track past block

accesses. The look-back window is as wide as the context window used to train the neural network. For each block access

in the look-back window, starting from the latest to the oldest, we retrieve the nearest k blocks whose distances are closest

to each block. As more distant block accesses have less impact on future accesses, we weight a factor α on the distances of

older block accesses. In Block2Vec , we choose α = 1 . 1 based on empirical analysis. All blocks are reversely ordered based on

their distances and top k blocks are picked as the predictions. 

Note that, we do not use the trained neural network to predict the next block. The major reason comes from the Huffman

tree optimization. Each time when we train the neural network, Block2Vec does not update all weights from the hidden layer

to all nodes in the output layer. This helps reduce the computation time. It only updates the weights between the hidden

layer and the nodes that represent the predicted outputs. Weights between the hidden layer to other (incorrect) nodes of

the Huffman tree are ignored and not suppressed. So, they might mislead the prediction algorithm when the same sequence

occurs for prediction. 

In real world, block prediction algorithms can be sophisticated. Many research efforts have been done in this space and

many others are also actively going on. In this work, these sophisticated prediction algorithms are not our focus. Instead,

in our implementation and evaluation, we just use the accuracy of the basic sequential/look-ahead prediction to measure

different correlation mining algorithms. 

5.2. Correlation-based block re-organization 

In this section, we introduce another possible usage for vector representations of blocks: re-organizing data blocks. We

show the rational and key techniques for implementing it. However, due to its complexity and a huge number of relevant

parameters, this usage is not a good candidate to evaluate the benefit of Block2Vec itself. Hence, in this research, we do not

include this use case in the evaluation. Future work is planned to systematically evaluate this use case. 

Block2Vec produces vector representations to indicate block correlations. Hence, these blocks can be clustered into differ-

ent correlated groups according to their distances in high-dimensional spaces. All blocks in the same group are considered

closely correlated with each other regarding the accessing order. Such a result can be used to re-organize data blocks to im-

prove the sequential read. Since we have already assigned each block a vector value, it will be non-trivial to apply clustering

algorithm like K-Means on them, as Algorithm 1 shows. Here, thr represents the maximal distance between blocks that are

put into the same group. The key challenge is that thr is unknown and not easy to infer: a large thr will end up with missing

correlations, but too small thr may combine non-relevant blocks together. We can use a semi-supervised training to get the

proper thr value as our previous work used [40] . 

The semi-supervised algorithm works as Algorithm 2 shows. We defined the learning factor ( α) as the adjustment

of thr each time. The adjustment can either increase or decrease the thr value. During training, the function will first
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Algorithm 1 Clustering algorithm. 

1: procedure Cluster ( blocks, groups, thr) 

2: for each b i ∈ blocks do 

3: g = get_nearest_group(groups, b i ); 

4: dist = distance(g, b i ); 

5: if dist leqthr then 

6: add_to_group(g b i ); 

7: else 

8: new_group = create_group( b i ); 

9: add_to_groups(new_group, groups); 

10: end if 

11: end for 

12: end procedure 

Algorithm 2 Semi-supervised training algorithm. 

1: procedure Train ( blocks, groups, thr) 

2: groups = {}; thr = rand(0, 1); ref=0; 

3: curr_adjust = incr; 

4: while true do 

5: groups = cluster(blocks, groups, thr); 

6: a = cluster_accuracy(groups, trace); 

7: if a > ref then 

8: keep_previous_adjust( thr, α); 

9: else 

10: reverse_previous_adjust( thr, α
2 ); 

11: end if 

12: if adjust_stop then 

13: break; 

14: end if 

15: end while 

16: end procedure 

17: 

18: procedure Cluster_Accuracy (groups, trace) 

19: var total = 0; hit = 0; 

20: for each b i ∈ trace do 

21: bc = blocks_context( b i , trace); 

22: for next ∈ bc do 

23: if next ∈ get_group( b i ) then 

24: hit++; 

25: end if 

26: total += k; 

27: end for 

28: end for 

29: return hit/total; 

30: end procedure 

 

 

 

 

 

 

 

 

call cluster _ accuracy (groups, trace ) to calculate the accuracy of current clustering based on thr . If a better accuracy

is got (i.e., a > ref ), then it means the previous adjustment is achieving better results. So we will repeat the adjust-

ment again (i.e., keep_previous_adjust()). If a worse accuracy is gotten, we will reverse previous adjustments (i.e., re-

verse_previous_adjust()) with a smaller learn factor α
2 . The whole training loop will stop once α becomes too small. The

function cluster _ accuracy (groups, trace ) is to calculate the accuracy of each group by replaying the block access trace. Each

time, it looks at the k context blocks for the current block ( b i ) and checks whether these next blocks belong to the group

of b i . If yes, there is a hit increased; or else, something is missing in the correlation. In the end, the function will return the

ratio of hit compared to the total checks. According to block correlations, it is expected to obtain a better accuracy if we are

able to cluster blocks more accurately. 
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6. Experimental results 

Block correlation mining is an intensively explored topic. There already exists multiple research as mentioned in

Section 2 . In this evaluation, we compare Block2Vec with two well-accepted methods: probability graph (PG) [17] and the

sequential prediction (SP). The PG implemented is based on [18] except that the file vertex in original paper is changed to

block here. 

6.1. Data trace description 

We use trace-driven simulations with several large disks traces collected in real systems. Specifically, we use the MSR

Cambridge Traces [38] (MSR-Cambridge) from SNIA [41] as the test data set in this research. The MSR-Cambridge trace

contains 1-week block I/O traces in enterprise servers at MSR-Cambridge. There are totally 36 I/O traces from 36 different

volumes on 13 servers. We chose two of them from the servers Project2 and Proxy1 as the datasets for all evaluations.

Project2 trace has approximately 29 million block I/O accesses, while Proxy1 trace has more (around 133 million) block

I/O accesses. Evaluations on other trace files show the similar results. Among all block operation, we select 90% of the traces

as the training set and the remaining 10% as the verification set. 

In MSR-Cambridge trace files, each I/O trace contains multiple fields: timestamp indicates the issue time of the I/O re-

quest; type can be either READ and WRITE indicating the I/O operation type; offset is the starting offset of the I/O in bytes

from the start of the logical disk; size is the transfer size of the I/O request in bytes. All fields are shown as follow: 

{ timestamp, hostname, d isk _ id , t ype, of f set , size, iot ime } 
Based on this trace, we first calculate the block Id based on offset as: 

blockId = 

⌊
of f set 

4096 

⌋

All the block accesses will be ordered based on their timestamps. The timestamps used in this trace is windows file time ,

which is a 64-bit value that represents the number of 100-nanosecond intervals that have elapsed since 12:00 a.m. Jan. 1st,

1601 UTC. 

6.2. Visualization of block correlations 

Before the accuracy comparison of Block2Vec and other algorithms, we first visualize mined block correlations based on

PG and Block2Vec (Skip-gram model) in Fig. 9 . The baseline SP is not shown as it is just a diagonal line. 

Both x -axis and y -axis are the block Ids. If two blocks are correlated, a tiny point will be plot. In this way, we show the

overall detected correlations from different algorithms. From these figures, we observe: (1) the line close to diagonal, which

represents the locality principle, is identified well by both algorithms; (2) although there are some differences, the overall

visualization is similar for the two algorithms that blocks are grouped into different parts, which can be used to improve

data organization. In evaluations below, we will quantitatively compare the accuracy of block correlations detected through

block prediction. 

6.3. Block2Vec training performance 

A reasonable speculation about using deep learning techniques like Block2Vec into block correlation mining is their per-

formance. In this section, we report the performance of training in different models, parameters, and datasets. The hardware

platform for this evaluation contains a 1.7 GHz Intel Core i7 CPU, an 8GB memory, and a 256GB SSD. No GPU or other ac-

celerator is used. 

Fig. 10 compares training speed of both CBOW and Skip-gram models against different vector dimension (i.e., from 30

to 100) on two traces ( Project2 and Proxy1 ). The y -axis shows training speed in K blocks/thread/second. As we can

see, longer vector decreases the training speed. Also, the training of Skip-gram is much slower than that of CBOW for both

traces. We also evaluate the training speeds of both CBOW and Skip-gram models against different context windows (i.e.,

from 5 to 10) on both traces. The context window indicates the number of block accesses we used to feed the neural

network each time (described in Section 4.3 ). According to Fig. 11 , longer context window indicates slower training speed.

One thing worth noting is the performance difference for CBOW model is not significant as in the case of vector size. But,

the difference for Skip-gram model is much larger. 

The training time on different datasets and training models are provided in Table 1 . It is interesting to see that although

Fig. 10 indicates a much higher training speed on Proxy1 trace than on Project2 trace. But the training time for Proxy1
is much longer. This is mainly because Project2 contains 271 K active blocks and 2.96 million total training sequences,

while Proxy1 contains smaller (38 K) active blocks and much more (13.3 million) total training sequences. A small number

of active blocks significantly boosts the training speed. But, the training time largely increases for larger training set. 

The time here is recorded as a single iteration through the training set. We normally run multiple iterations to achieve

the best accuracy. Note that both traces are collected from a week-long run of the production server, whereas the maximal

training time is less than 1 hours. Hence, it is feasible to run Block2Vec regularly in the real system. 
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Fig. 9. Block correlations visualization of PG (left) and Block2Vec (right). 

Fig. 10. Block2Vec training speed vs. different vector dimension on different training models (CBOW and Skip-gram) and datasets. 
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Fig. 11. Block2Vec training speed vs. different context windows on different training models (CBOW and Skip-gram) and datasets. 

Table 1 

Training Time with vector size 50 and context 

window 5. 

Project2 Proxy1 

CBOW model 120.12 s 881.95 s 

Skip-gram model 183.91 s 2862.5 s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4. Block2Vec prediction accuracy 

As mentioned earlier, larger vector size and context window will slow down the training phase. Not surprisingly, they

also impact the accuracy of block correlations. We further show the accuracy of mined correlations towards those different

parameters in this section. 

To evaluate the accuracy of Block2Vec , we use block prediction strategy described in Section 5 and measure the per-

centage of correct predictions. The prediction criteria is largely simplified: each time, we predict next block access with k

candidates; if the real block access belongs to the k candidates, we consider it is a hit , or else a miss . The accuracy is calcu-

lated as Accuracy = 
hit 

hit+ miss 
. Each time, we predict k = 30 blocks (the results of other possible k values are also reported in

later evaluation) to testify the accuracy. In this evaluation, we use Project2 dataset as an example. Again, the first 90% of

the total data trace was used to train the model and then the remaining 10% was for prediction. 

The results are given in Fig. 12 . There are several key observations. First, the Skip-gram model has a significantly higher

accuracy than CBOW model, mainly because the Skip-gram model is able to capture the order information as described

in Section 4.3 . Second, the accuracy of the Skip-gram models increases for higher vector dimensions and larger context

windows. But the change is fairly small, under 3%. Considering the increase of computation complexity shown in Fig. 10 , a

medium vector dimension (e.g., 50) and context window (e.g., 5) will be appropriate for real-world usage. Third, the accuracy

of the CBOW model is not only limited (typically under 50%), it is also more obviously affected by vector dimension and

context window size. In addition, it is interesting to see that its accuracy decreases with larger context window. This is

mainly because that the order information is ignored in the CBOW model. So that, the longer context window it chooses,

the more order information is lost. 

6.5. Block2Vec comparison evaluation 

In the end, we compare Block2Vec with the widely adopted probability graph (PG) strategy and the basic sequential

prediction (SP). 

To predict the next block, the PG algorithm simply locates the current block in the graph and returns the top k neighbors

whose edges have the largest co-occurrences. For a fair comparison, we use the same min f value to filter out the inactive

blocks to accelerate training and also improve the accuracy. The SP method does not have training phase. Each time, we just

select next k consecutive blocks as the predictions based on the current visit. Similar to PG, we also exclude the inactive

blocks in the accuracy evaluation. 
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Fig. 12. Prediction accuracy of two training models towards different vector dimensions and context window size on Project2 trace. 

Fig. 13. Training accuracy of Block2Vec (CBOW and Skip-gram), PG (probability graph), and SP (sequential prediction) based on different k . 

 

 

 

 

 

 

Fig. 13 reports the prediction accuracy on the Project2 trace based on different algorithms and k ranging from 5 to 30.

The proposed Block2Vec with the Skip-gram model achieves the best accuracy among all algorithms, with 8% performance

improvement than PG. The CBOW model is much less accurate than PG. SP has the bottom performance, indicating that

most block accesses in this trace file are not sequential. For such a non-sequential trace, Block2Vec is able to achieve an

impressive accuracy under such a simple prediction scheme. 

Another point worth noting is that PG requires much longer training time than Block2Vec due to the time-consuming co-

occurrence updates on edges. In fact, to train on Project2 trace, which has around 2.9 million block access, the algorithm

costs more than 100 minutes to finish. 



D. Dai et al. / Parallel Computing 82 (2019) 75–90 89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Conclusion and future work 

In this research, we propose to use high-dimensional vectors to represent blocks. Based on such an approach, we design

and implement Block2Vec , a deep learning strategy to learn the best vector representations of blocks by training a deep

neural network. To the best of our knowledge, this is the first time that a deep learning technique for vectorizing block ob-

jects is used in block correlation mining. We introduce and discuss the design and implementation details of Block2Vec and

present detailed evaluations on both training cost and accuracy, with comparison to two other well-known methods, prob-

ability graph and sequential prediction. These results confirm that Block2Vec is a practical and accurate way to learn block

correlation in storage systems. In the future, we will further apply Block2Vec to more use cases and also use deep learn-

ing strategy on object-based parallel file systems. We also plan to combine the vector representations and other sequence

prediction algorithms like the recursive neural network to conduct more accurate block predictions. 
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